翻訳と辞書 |
Geodesics as Hamiltonian flows : ウィキペディア英語版 | Geodesics as Hamiltonian flows In mathematics, the geodesic equations are second-order non-linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first-order equations, in the form of Hamilton's equations. This latter formulation is developed in this article. ==Overview== It is frequently said that geodesics are "straight lines in curved space". By using the Hamilton-Jacobi approach to the geodesic equation, this statement can be given a very intuitive meaning: geodesics describe the motions of particles that are not experiencing any forces. In flat space, it is well known that a particle moving in a straight line will continue to move in a straight line if it experiences no external forces; this is Newton's first law. The Hamiltonian describing such motion is well known to be with ''p'' being the momentum. It is the conservation of momentum that leads to the straight motion of a particle. On a curved surface, exactly the same ideas are at play, except that, in order to measure distances correctly, one must use the metric. To measure momenta correctly, one must use the inverse of the metric. The motion of a free particle on a curved surface still has exactly the same form as above, i.e. consisting entirely of a kinetic term. The resulting motion is still, in a sense, a "straight line", which is why it is sometimes said that geodesics are "straight lines in curved space". This idea is developed in greater detail below.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Geodesics as Hamiltonian flows」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|